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ABSTRACT /532 ?

Several methods of treating Fuler transform integrals exist. One
such method follows from the expression of the Euler transform kernel
as a bilinear series of independent solutions to the Jacoby equation
valid for the integration variable in the real interval -1 to 1 and
the transform variable outside. The transform function then is ex-
pressed as a series of solutions of the second kind to the Jacoby
equation whose coefficients are the expansion coefficients of the
function to be transformed in the complete set of Jacoby polynomials,
provided the latter exist. Such a series is absolutely convergent for
the transform variable not on the real interval cited above. Another
method, due to MacRobert, permits quadrature of the Euler transform
integral directly for certain integrands. Finally, the expansion of
the Euler kernel in a bilinear series of Bessel functions and Neumann
polynomials valid for the integration variable on the finite interval,

0 to a, is mentioned, and applied to several integrals., Examples of
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all three methods are given.




INTRODUCTION
In certain applications of applied mathematics such as the study
of potential problems in quantum mechanics or plasma physics, integrals

of the Euler transform type occasionally arise;

g(z)= r (2-2)7" ¥[x) d¥ (1)

~4
where f(x) is sufficiently well-behaved to be uniformly approximated
on the interval [—I,l] by a complete set of polynomials, and /u. is
any number such that Re/w >0. If the order of the transform, /pb‘ s
is an integer, the restriction that z not lie on the real axis segment,
I}l,l] may be relaxed by taking the principal part of the integral.
As stands, g(z) is an analytic function of z for all neighborhoods not
overlapping the real axis cut as given above, and therefore the kernel
may be expanded in a Taylor series such that the integration may be
carried out term by term. There is, however, another expansion of
the kernel in a bilinear series of functions which are solutions of
the first and second kind of a hypergeometric equation. This repre-
sentation of the kernel is also absolutely convergent for all =z
restricted as above, therefore term by term integration in equation
1 is also justified. However, solutions of the first kind with
integer indices are polynomials that form closed sets on the interval,
[-1,11 with respect to specified weight functions. Thus g(z) may be
expressed as a series in solutions of the second kind with coefficients
that are the expansion coefficients of the arbitrary function in the
polynomial set. An abvious advantage of this kernel representation

follows of f(x) is orthogonal to all but one of the polynomials, in



which case g(z) is proportional to a solution of the second kind.
From a numerical point of view, expression of g(z) in a series of
solutions permits the use of recursion relations to "build up'" the
series as might be done in a computer evaluation of g(z). Finally,
the establishment of a bilinear expansion of the Euler kernel permits
the extension of integral tables to cover integrals of the type shown
in eq. 1 if the appropriate expansion coefficients are already eval-
uated. Examples of a few of these integrals are given in Appendix A.
The following three sections summarize the development of several
bilinear expansions, and treat the Euler transform of a special
integrand. The first of these reviews some basic properties of the

Jacoby function system necessary to subsequent development.

The Jacoby Function System

The hypergeometric equation with three regular singular points
located at +1 and oo is known as the Jacoby equation. Its two
independent solutions are characterized by three parameters o, 8
and n; if the latter is integer, one of the two solutions is a poly-
nomial of order n. The second solution is regular everywhere in the
complex plane but has branch-points at +1, with a branch cut joining
these two singularities to make it single valued. The Jacoby poly-
nomials, or solutions of the first kind, form a complete set on the
closed interval -1 to 1 with respect to the integer index n and a
weight function given in the table below. At infinity, these poly-

nomials have a simple pole of order n. Both solutions satisfy




well-known recursion formulas given elsewhere. t For certain specified
values of the parameters o , and @ , the Jacoby polynomials are
proportional to the Gegenbauer, Tchebycheff, and Legendre polynomials

as shown in the table below:

Table One

Weight Function,

( 4, p ) Name Symbol w( q\p ) Normalization, N(qlﬁ)
Jacoby P( J,P ) (1+x)€ (1- x)d 2 nmw) [(mt 1)
n N! (2ni%+@+1 ) [Yar@antr)
)4‘3)
4.(5: e y3 Gegenbauer C/\ (2100 )[(A+ ’> (1_x2)/\~'4 sz"“r’/wn)
P(ZA)F(/\J."-}M) n! (n41) [/1/“11
) plra-d) 204 ¢
=3 =-4 Tchebycheff T K P O (1-x7) T.h#0 T ne=
4=z 1st kind N ol " S 11 M=o
we Bk Tchebycheff U_ =(m! [(}) P”s A)(1-x2y n n#o; Mn=?
2nd kind N 2[Tmy)
d= (= 0 Legendre P _ = pee) 1 2.

2n+ )

The parameters d,@ and >\ have real parts greater than -1. Thus we
see that any result that holds for the Jacoby polynomial system is
also true for any of the systems listed in the table. For the purpose
of conveniently expressing later results, we shall introduce a general
polynomial/function system in the next section. These are the Jacoby
solutions for arbitrary & ond F but with an additional multiplicative
factor to account for the various interrelations among the polynomial
sets given by special values of P as listed above.

As shown in Appendix B, the Euler transform method solution of



the Jacoby equation leads to a convenient integral representation of
its solutions. The choice of the contour determines which of the two
independent solutions is represented; and, for the real interval
[-1,1] 5 we obtain the integral form of the Jacoby function of the

gsecond kind:

Q)= 27 [ (-t k) - e @

B

Here z*;Ehﬂ. This function satisfies the same recursion formulas
as Plg o@) , except for n = 0, and if Re( o(,ﬁ )>-1 and is analytic every-
where except for the branch cut between -1 and 1. 1Its value on the

cut is defined to be:

Q4Px) = £ Q. “Plxsi0) + Q¥ (1-10)]

3)
= - 1 /’D“'ﬁ’m & 27 ogam T'a) [lmps 1) (1-207 (14xy
Arginar " [(nta+ +1)

y F('}'H/)"n—d-ﬂ; l-a 5 g-4%) 5 -l<x<{

The latter equality follows from considering the contour integral about
the branch cut and taking the limit Imz = 0; and F is the hypergeometric
function, 2F1 . Additional properties of the solutions of the second
kind associated with the Jacoby, Gegenbauer, Tchebycheff, and Legendre
polynomials are found in standard texts.l’z’3
It is known from the theory of the hypergeometric function that

these quantities map into themselves under the fractional linear

substitution:

t' = (At+B)t+D) ; AD-BC #0 )




Therefore it is possible to obtain several equivalent integral rep-
resentations of the same solution. One very useful form is derived

from eq. 2 by the substitution:

e

oA en-i) /1 2 -1 o

Eq. 2 then reads:

Qhu.e)(?) = 2‘"-'(2_'1)"(%,)‘”'4“ (z—u)‘”"(1+u)"'ﬁ(/—u)"“)' £¢ [,1] ©

=1

In a similar manner, the integral representations of the polynomial

solution may be developed:

4,0 -n-y ‘- Y - .n- . 7
E e (2)= 27" (i) (-2 (1+2) ’gcﬁ(z—u) (1+a)"C0-u)" ‘du; -1s2%] 7
' C

Here the phase of the integrand has been chosen such that Pid»a)

is real for z on the positive real axis. The selected contour encloses
the points z and 1 where the complex plane has been cut from -1 to

- o) - These two relations may be combined to give the key equation
upon which this paper is based. First we see that the integrand. of

eq. 7 is analytic everywhere in C except at z, and hence its residue

is (n!)-l(-l)n times. the n-th derivative of (1+z)n*-P(1-z)n+’< .

Therefore the polynomialiPéd’@ ) is expressed by Rodrigues' formula:
P‘*»P) [i=x) (o) 8 (=)™ d" (14a)™Cl =% )" (8)
n (%)= Q"n! J?"

Now, since the integrand of eq. 6 vanishes at u=+1, the integrated

terms vanish upon an integration by parts to give:



Q"’F’(z>= (z—f)“/zm"’(—r)”j' t " (et Cdt (9
" 2t m! 5o 2-t) ¢

Rodrigues' formula may be substituted for the integrand in the above
equation to give the fundamental relationship between the polynomials

and solutions of the second kind, often called the Neumann integral:

) ]
Q= 27 (2-(Ea) ® | (207 (1) 2 U-07 R4P1e) de (19)

-{

Here =z d, [-1,1] . The equation may be extended by definition to
values of /Rez/<l, Tmz=0, if the principal part of the above integral
is taken. This Euler transform relationship holds for all of the
specializations of the Jacoby polynomials and solutions of the second

kind as listed in Table One.
Bilinear Expansions

The Jacoby polynomial system and its specializations form closed
sets on the interval [—1,1] . In order to express this property as
well as subsequent expansion formulas, it is convenient to introduce
a general polynomial of the first kind 1//"[4'(5), and a general function
of the second kind \fy‘ld'w, which, for special values of their indices
are proportional to various of the polynomial systems listed in
Table One. Thus, for & and (3 as given in the table below, we have:

{ 1/)“(4,(5) i _ Bnld,ﬂx){ cqma of the .Ixca‘n( Pohjnomf& (/ﬁ(hc(’loy\}

L)O,,“’m S ng+ems quwen in Teble L




The constant of proportionality, Béa)a) has the values:

Table Two
4B Name Polynomial/Function Br(ld"s )
4, 5  Jacoby pl,f )(x);Qr(l “3) (4 1
A4 A-%  Gegenbauer Ci(x) ;Dj(x) F(ZA)F/A'r;{#n)/{r(m-m)r’(,\*k)}
-5, -% Tchebycheff T_(x) SR (%) F'(m/z)/[r"(;)!"(nu)}
1st kind
i 3 Tchebycheff U_(x) S () F(m’/;)/{l"(é)T’(mZ)}
2nd kind
o, © Legendre P_(x) 5Q (%) 1

The general polynomials are orthogonal on the closed interval from
-1 to 1 with respect to the weight function w(x) for different integer

indices:

["wew %00 %P 0) dy = R §

-1

him

The normalization constant for the general polynomials is related to

those given in Table One for the indicated choice of parameters by:
) /d@)]z ld )
n = [Bhl N” P

The closure relation for the general case is:

me[ 4R Y APy L) 2 Sy x’) b

hzo



It follows immediately from this result and the Euler transform re=~
lation between the polynomials of the first kind and functions of

the second kind, eq. 10, that (z-x)“1 has the expansion:

(2-%) "= 201" wzz)Z ("0 7t R4 4

This equation is the familiar Christoffel-Darbroux identity as the
upper limit on the index n passes to infinity. It may be derived from
the recursion relations of three different indices satisfied by all of
the Jaﬁoby family for any upper Iimif, as shown in Bateman.1 For
fixed z, the region of absolute convergence for x is any point on the
interior of an ellipse, passing through z in the complex planc with
foci at +1. The quadrature formulas now become straight-forward in
terms of this expansion.

A generalization of eq. 12 to integral powers of (z-x)-1 follows
from the definition of the associated polynomial and function of the

second kind. Let these quantities be defined by:

“p i 2 o |
3;,& ¢ v = /z—/)q d" {wm’?él'm/lf)} (13)
wiz) "

and

(ﬂ,“’m (2)= (&20% {" [wz)(f;"-”’(z)} (14)
w(z) dz°

where the index m is integer and positive. It may easily be shown

that these functions satisfy the associated equation:




(15)

(I-Yz)‘jﬂl’ ( F_é(,(“(“,z)fy) y’+ (nam)(n+m+ o<+@+i) 3 =0

where y represents either type of solution. Recursion relations for
these functions follow from the above equation and the previous
definitions. 1Integral representations follow from the definitions and
the integral representations of the non-associated quantities previ-
ously discussed. Thus differentiation of eq. 12 with respect to z
leads to the required generalization of that formula in terms of the

associated functions of the second kind:

2'1)—'"“: (m'/)_,z (_,)um W(z) {Zz‘l)"’! Z {Wu,a‘)}—lﬁmﬁ)(n %14,(3%)[?) (16)

n
nso

If, in the integrand of eq.1l, h(x) is defined by f(x) = w(x)h(x)
and /L= m+l then that integral becomes, in view of the expansion

developed above:

[2=x)™¥ m!

g(z).-:j wh dx - (—l)‘“"wlzl(Z’—:)WZZ'A:'m()q"*'(’Jm)(Z) (17)
nco

{d,89m
where the coefficients of %% £ ? are:

AL 2 [née) j‘wm 4Py iy e

By this means we have expressed g(z) in an absolutely convergent
series for all z qﬁ El,l] , and have reduced the integral to the
problem of determining the coefficients given in the above equation,

In cases where these are listed in integral tables, or may be easily
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determined, the tables then can be expanded to include generalized

Euler transform integrals of the type given in eq. 17. As an example,
i4,%)

consider h(x) = cosoix; w(x) = 1; Ha"= Pn(x); and %@“ﬂ)= Qn(z);

then we have:

J wsarlendy = 2, A (7) ]” (-0 (2not) Ty () Quizy D
Nzo hzl/

where

A - f (2nei)(-1)" n+/{(d) ) e e (20)
O; ns odv{.

Other examples are listed in Appendix A.

A simple generalization of the integral shown in eq. 1 follows
by replacing the denominator by a polynomial of finite order whose
roots do not lie on the real axis segment, [-1,1] . By means of
an improper fraction expansion, the integral may be reduced to a sum
over distinct roots of integrals of the form shown in eq. 17. Here,
the integer mt+l is the order of the degenerate root if m > 0.
Integrals with polynomial denominators that do have a finite number
of roots on the real axis segment may be handled in like manner, but
with the real axis segment definition of functions of the second kind,
eq. 3, and replacement of the integrals with their principal values.

A third method of expansion of a Euler kernel depends on the fact
that the integral representation of the solutions of the second kind,
eq. 6, is valid for any n whose real part is greater than minus one.

Thus we shall show that a bilinear expansion exists for the
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-1, for Re Y >-1., For clarity, we shall explicitly

quantity (z-x) "
indicate the parameter dependence of the weight function as superscripts.
Now from the choice of the parameter, B, given in Table Two, it follows
that eqs. 8 and 6 may be taken to be definitions of the general poly-
nomial and function of the second kind respectively. 1If, in the latter

equation, n is set equal to Ly , where L is a positive integer,

eq. 6 becomes:

!
“Plz) = (1) dbw ) [1-¢)"* (21)
‘e (B DT 7 (7) (Z-t) 44741

-

But

WPl (- £ W OO 1= ¢t

and therefore, after integrating eq. 21 L times by parts, we have:

’“'6)( )y = (—/)d” [(e41) j' et ,GL[ w “P (- fi)e} (22)
%x B) T T A T k) ) (2-6)7 A

As in the previous cases, the integrand vanishes at the end points,
and thus the integrated terms are zero. Rodriques' formula may be
used to replace the derivative appearing in the integrand with the
appropriate general polynomial to give the following integral rep-

resentation:

) ’ (23)
2) = [lsx)[14+) (-1)* dj 14+%,44%) sy, 345
1211 ( W (z) T (1+6+1) 27H ,(Z't)y*’W [i:)'}é (t)

The closure formula eq. 11, may now be applied to extract the denom-

inator; thus;
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(24)

2 NIy P 3] 3 U, 38017 Ly, p40) pyzy Tlarvr) g™
) =D &
(72) =W /Z)Z}I_‘:,{n* } %L mY, Pla+) 1/

In this formula, as in others, z is assumed not to lie on the cut.
Several interesting cases arise from particular choices of the
parameters o , § and ¥ . For example, if ¢=F=o and Y= -//2_ s

the above equation reduces to:

-L < —_—
1t 220, (2 28 ) Gy (9) Tols) (25)
2 Lz

which, if the interval is changed to 0, n becomes the Fourier cosine
expansion of the square root of z-cos®. The functions, Ql , are
=2

analytic everywhere in the complex plane with logarithmic singularities
at +1, and discontinuous along the cut from -1 to 1. These functions
arise in the theory of toroidal harmonics, and are discussed by

3 i . -% ) o
Hobson. This same quantity, (z-x) °, may be written as a bilinear
series in Legendre polynomials by setting J:(az ¥, Y- -%. The

result is:

(7-%)"F= (2200%2%), 2D Site) (26)
Lzl

where S}_(z) is a Tchebycheff solution of the second kind defined by:

!
-4 D
Sley= 27 (8%1) ’J(z-t)"l/-t“) éU/l/t) dt 7
a4

Quadrature formulas applying these expansions are straight-forward,

and examples are given in Appeudix A,




13

As a concluding remark on this section on bilinear expansions,
we shall briefly comment on one other bilinear form for the Euler
. 1 . .
kernel. As shown in Bateman, for x in the finite interval, [0,@3)

and for (z|> Ix], an expansion of the Euler kernel may be written:
b
= -
(z-%) =§T €0, (2)In(1) 5 &30 h=0; €,-2, n31
zo

The coefficients of the Bessel functions in the above equation are
(Neumann) polynomials in z-1 of degree one greater than the order and
are bounded for large z by an exponential form in 22, Therefore the
expansion shown above is absolutely convergent whenever Ix,(,ﬂ.
These polynomials, however, do not satisfy Bessel's equation for
arbitrary index n and therefore do not posses the same relationship
to the Bessel functions as the Jacoby polynomials do to the Jacoby
solutions of the second kind. Recursion relations, and integral
properties are found in the above reference to Bateman. Several

examples of this type of integral are included in Appendix A.
A Special Integrand

Special methods for carrying out the integration of eq. 1 for
certain integrands exist. One, due to MacRobert,4 is given below.

n
Consider the quantity j%(z) to be defined as:

o

- ! J a, 4,8) 28
Fer = 100 - ety [@oer BT 0w 04 (28)

-1
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n
We now may show that for q < n, fg(ZF=O. From the Euler transform

relation between solutions of the first and second kind as given in

“\0)

eq, 10, we may substitute for y& in the above integral to give:

0= i (20" (B 4P )W el (29

2 w “'6)(27

-
However for q < n, (z3-t9)/ (z-t) is a polynomial of q-l order, and
hence is orthogonal to the general polynomial (Jﬂ””ﬁ) , in eq. 29.

Thus g”= O , from which it follows that;

4

1) ’ - 4
AL AT J z-¢)" L0 wr b (30)

Or, by ta}}ng fhe appropriate linear comhinations of this expression,

it algo follows that:

I
| (20 9%“'”(0%’“”"’(t)w"‘"”/e) it GV

-

4,8 1, m 4
! / 4 * (? z (-1)
“ﬂ‘ D) 2—(—714/,,, -

Thig result may be generalized somewhat by setting q = n+l. Then,

by the arguments above we have:

~
(9 )
™
~’

_ !
L0 tpye -0t o [ e s w40 b

nEl
!

Te evaluate this integral, we replace the polynomial by Rodrigues'’

formula and integrate by parts n times, We then obtain:

! ' ¢
[ etz fwsen ™ | ey i dt 4%

-1
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This integral is just the normalization integral for the Jacoby poly-

nomials with n set equal to zero, and d replaced by ni« and (3
replaced by n 4 (5 . Therefore:

n nidt@ 4,8 34

I"*' (2)= 2 F/mdw) r'/n+(sl-/)/fl,(/ ’P{g) ["(2,,+4+[5+2)} (34)

And finally giving the result:

et o " ) niar @ 3
Z + %M'M(Z) - /) j‘l ¢ %‘(dﬂ){f)wh,{’)/“ﬁ: {_/)42 (31"/”“”_,) r‘/mﬁh) ( 5)

2wl T (Z-6) WP (2) [ (2niasp3+2)

Again, after taking the appropriate linear combinations of the above

equation, it may be shown that:

P [I) A - ’ - - “
%:é (zl)(ﬁwM lz) = (0 Zwoy)] 'j (2-t7 P By ) it
= (36)

+ 20“6"[7#1 L¢+{3+2)F(d+h+l)r’./,/gwlﬂ)(’/)i
NI (2nsns 542) W (2)

The convergence of these integrals for large z is shown in the case
of the Legendre functions for all real indices in the reference

cited above.

Comments

The expansions of the Euler transform kernel and its generalizations

given above represent a general technique for the reduction of the

generalized Euler transform integrals as shown in eq. 1. 1In each
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case, the quadrature is expressed as a series, convergent for all
values of z not on the branch cut, of functions that form the second
solution to the variation of the Jacoby equation as listed in Table
One. The well-known recursion relations and asymtotic behavior of
these functions are valuable aids in the numerical computation and

analytical study of integrals of the Euler transform type.
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Appendix A

A miscellaneous collection of integrals evaluated by the pro-
cedures discussed in the text is listed below. The appropriate
expansion coefficients are taken from references 5 and 6. Integrals
involving the general polynomial/function system defined in the text
are valid for all of the special cases of the Jacoby polynomial/function
set. Roman indices represent positive integers or zero; greek
indices represent numbers restricted by the requirement that their
real parts be greater than -1 unless otherwise noted. The variable
z is .an arbitrary complex number not lying on the real axis segment

~1,1 unless otherwise noted. Integrals with a slash are principal

parts.
i Al
J’ 5&“'“'(1)\4/“’”’/1>d’)( - (A1)
e (a+bx?)
n (Gd)f .
iW{d,ﬁ) LQJ (d,(&) j— -0 i ) /( —Q_)
AL R AD i
% N ) “ A2
i__J ,‘{”/;F)/Y)%,,B){‘)W/m/(y)o(g{ = W“‘m/l)(ﬁ)")é“ ﬂ)(Z)Spnlq"ﬂ(z.) (A2)
-t (Z'Z)

- 2”(3"[2“+d+|6 +2) F(o(fnkl.) F( ‘ﬁ’fﬂfl)
N![(2n+a1342)



L
2 (2-x)

-

jl o % /a,(&.)/,z) W ld,p){,x)dx:-

ZMM@ Clntar 1) Flu+p+')

[(2ntar p+2)

N J« ! %/q,ﬁ)%,/«,p)wu,@) A1 _

Z-l (2-1)

[d+%, 54¥ ) N
J %’ ( )Wmv,(sw
2 (2- r))’H

/
%us){ )WM'M“‘) AQ’ -

- {Z- Y)”M’

YtAi-2
" e -1

(Z- x)(u

-}

(

i
a

vzﬂr)é

(x)dx _

Zm—J W""a(?) (- I)* }ﬂnlal(a)(z)

0% 2 9™ s

[(irern)

9 l=1y [m [T )25 )"

(jpnw

Ref>—1

(_’)-(W(«f»){z) %wlq,ﬁ)/z)%m‘p){z)') w<n

(4,’5)

%Id,g;k-)/z )

. thzxa"\' ”F/Aur)/l"/m)

[Sd

v Ly (1) FLersn) Dy (2) Ty (@)

L=0

A!

Revrs; Retiiay>t

Z t(oa41) Qc(z) Ty !l

Lzo

a)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)
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J SMQR) d’x— TZ (2n+l)Q [Z,)J,“,L(GJ)J_,,_,/ LA) (49)
S TOR B e

where R za24b*- Zaby

a = ;
J M[AS) 0{1 - Lr , O (Z)")‘Lh L&{A+D1)}‘I-h§ Ia'('h(‘r’\z ’} (A].O)
o S(Z"I) 2 hzo

ewzi)nzo) .22, nz| ')’317/0‘/} Q:[az__,l/z)"&_

Properties of the Neumann polynomials are given in Ref. 1

(All)

heo

- 2 (%-a)” 47an-'(L)

Qa oY) - T
J‘ (a-xV % (z2-2)" Jly - JZZ € On ‘?));m/ “)Jih-qi(%“)

]

v (A12)
f,(Z"Z)"Q (x)dy = Z(2n+/)@,(z)[1 FU”“‘J/{(h—/e)/hueu)} ;5

nezo

Qk(flf) s de{;nczﬂ th ?7).3.

_..Q-—- (A13)
}/(I l}) 3’1’7 (I+a Zax) 0‘)(“'”26 U,,,/X){ T-gq ) lal<] I

L
———— ' a
an(asn’ la>1
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Appendix B

The Jacoby equation is derived from the hypergeometric equation
with three regular singular points at O, 1, and ® by an appropriate
coordinate change and linear combination of parameters such that the
new equation has its singular points at +1 and 060 . Written in
standard from, the Jacoby equation is:

2
{(f—x’).d ‘ (@—a-(u@n)):)i + n(mwupm)}‘gﬂ):o (BL)

ox? dx
where the parameters A and ﬁ have real parts >-1, and the index
n is taken as integer. In this case, one of the two independent
solutions of the above equation is a polynomial, regular at +1 and
having a simple pole of order n at infinity; the other solution is
a function, regular at infinity and single-valued if a branch cut is
made on the Riemann sheet between the branch points -1 and 1. An
integral representation of the general solution of the above equation

may be had by means of a generalized Euler transform:

Yo = §[%—t)+/“‘ Vi dt (B2)
C

where /*' is a parameter to be fixed, and the contour C will determine
what linear combination of the two independent solutions y(x) rep-

resents. Let L ,stand for the operator in eq. Bl, then there exists

an operator A such that:

Lfx-e = A, (x-¢)" (B3)
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where A operates on the variable t and is a linear operator with
the same type of coefficients of its second and first derivatives
as appear in the operator L. These coefficients may readily be

determined by a Taylor expansion about t of the correspondent co-

efficient of the operator L in the above equation. We find that:

= (-9 d° - - (B4)
A = -t f}z + (o P*ld+p+2/~)b)§%+n(ma+p+/) /0»(/1+A+(5+/)

The adjoint operator, E?, is determined from the above by Green's

theorem and turns out to be:

AI: = ;l%i(/-t?) _ ﬁ (d-P +(at+(5+?/n)é) 4 h(nfa+[3+l)—/,4,//,.+d+(5+l) (B5)

Now all of the above equations can be combined to give the following

sequence of results:

0= Ly
(B6)

= <j> L, lx-¢/vet)dt
C

= 3{>G Ay (%t 7 v Ak

= 41/(2-0*"/5; Vit dhcfcjf_é{(,_g) (V“)sz (2=t (x-t)*'“i!{vlﬂ)}dé
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Now any contour that forms a complete circuit in the Riemann sheet
or any open contour that begins and ends in a zero of the integrand
of the second term (the bilinear concomitant) will cause.that

term to vanish. Since v(t) is as yet arbitrary, the satisfaction of

the resulting equation demands that:

o 2
AVir) = ﬁz{(:-ﬁ)vlﬂ} - j%{ (4~ - (a+f+24)E) v(t)f

(B7)
pnlnidt pe) —/w//wu(%/) = O

We have, as yet, not chosen the parameter/bv . Quadrature of the
above equation follows immediately if the last term vanishes;

therefore it follows that:
"
/(A-: _M_d_P—j
I1f v(t) is not to have an essential sipgularity at & , the constant

of the first integration must be taken to be zero, therefore, the

second integration can be readily performed to give:

vt = A([+8)" -t (28)

Hence, the general solution to the Jacoby equation may be written:

i - AJ (-0 T e - Pl (B9)
C

where we have made the choice uz-n-4-3#-1, and A is an integration
/4 1] g

constant. The combination of fundamental solutions that y(x)
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represents is determined by the choice of the contour in the above
representation. It may be shown that if a simple loop enclosing the
point x on the line segment -1,1 and 1 is selected, with the

branch cut made from -1 to-e , y(x) is proportional to the Jatoby
polynomial, Pédlp)(x); and on the other hand, if the contour is
chosen to be the real axis segment from -1 to 1, the second solution,
Qﬁ“hP )(x) is represented if x does not lie on the real axis segment.
The proportionality constant in both cases is the integration constant
A, and turns out to be 2-n-1 as determined by comparison with the

hypergeometric series solution of the same equation.
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